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Differences in the relative toxicity of xylose-rich prehydrolysates derived from woody and herbaceous feedstocks

are likely due to the relative abundance of a variety of inhibitory compounds. Acetate, as well as several aromatic
monomers, has been shown to be an inhibitor of the xylose-fermenting yeast, Pichia stipitis . Comparative infor-
mation on the concentration of known and likely inhibitors, other than acetate, is lacking. The present study provides

data on the aromatic monomer composition of representative herbaceous and woody prehydrolysates. Dilute-acid
prehydrolysates were prepared from three feedstocks; two herbaceous, corn stover and switchgrass ( Panicum virga-
tum L.), and one woody (poplar). The prehydrolysates were neutralized with Ca(OH) ,, extracted with ethyl acetate,
trimethylsilylated, and analyzed by GC-MS. Fourteen aromatic monomers were tentatively identified by comparison

with published mass spectra. The concentrations of the aromatic monomers totalled 112, 141 and 247 mg L -1 for
corn stover, switchgrass and poplar prehydrolysates, respectively. This is also the order of increasing inhibition of

growth and ethanol productivity observed for Pichia fermentations. The woody prehydrolysate contained approxi-
mately four-fold more syringyl-based monomers than did the herbaceous prehydrolysates, while guaiacyl-containing
compounds were more evenly distributed.
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Introduction (2) sugar degradation products, eg furfural; (3) lignin degra-
dation products, eg syringaldehyde; (4) fermentation pro-

The production of fuel ethanol from lignocellulosic i . )
biomass feedstocks has several benefits including domestﬂuas’ eg ethanol; and (5) contaminants released by pro

availability, pollution reduction and ease of introduction Cessmg equipment, g chromium. for a review of
. I : : R prehydrolysate fermentation and a discussion of the role of
into existing gasoline and diesel distribution networksinhibitors see Olsson and Hahrigadahl [15]

[12,25]. One widely studied process for converting ligno- Severa'l apers describina ethanol vields fnémhia sti-
cellulosic biomass to ethanol involves a pretreatment of th pap 9 y

IR . : itis fermentations of dilute-acid prepared lignocellulosic
feedstock with dilute acid (approximately 1.0% (w/w sul—%I ; : d ;
furic acid) at temperatureé g\eer 4D cgnditioc;lé wh?ch prehydrolysates have been published, including studies of

; . : rehydrolysate derived from aspen wood [26], red oak [22],
catalyze the hydrolysis of biomass hemicellulose, but leav . X
the cellulose fraction largely intact [17]. This dilute-acid ugar cane bagasse [20], corn cob [10], mixed wood chips

. . —— 18], eucalyptus [9], switchgrass [8], corn stover [8,16],
pretreatment yields a solids stream, consisting of mostl . . ’
lignin and cellulose, and an aqueous stream, called the pr oplar [8,16], rice straw [13inus radiata[19] and wheat

: : : ; traw [4]. Pichia, although an efficient fermenter of xylose
hydrolysate, which contains hemicellulose-derived xylose : R : - i
lesser amounts of other carbohydrates, sugar degradati+s susceptible to inhibition by toxic compounds in lignocel

o . . . rlIosic rehydrolysates, leading to lower ethanol pro-
products, lignin degradation products, acetic acid, and OthedPuctivitigs (gyetha¥lol i ryrl) and ?ﬂelds (g ethanal g sugpar

compounds [15]. Sugars (mostly xylose) in the prehy- : : 4
g - consumed') compared to those achieved in fermentations
drolysate typically represent 15-30% of the original dryof control r%edia ?15]. Among the compounds identified in

weight of the biomass [7]. Rapid and efficient fermentation ! S >
. . . : rehydrolysates which are known to inhiBitchia fermen-
of these sugars is essential for making biomass-to-ethan tions are vanillin, syringealdehyde, acetic acid and fur-

conversion processes economically viable [25]. S . .
Dilute-acid prehydrolysates contain many compounds]cural [5,22,23]. The lignin-derived compounds, ie syringe

other than sugars, and some of these inhibit fermenta‘tioﬁldGhyOIe and vanillin, have been shown to be particularly

; - L otent inhibitors of ethanol production and cell growth
by and growth of microorganisms. These inhibitors can b : ; :
divided into groups based on their origin [15]: 5,22], especially when compared on a concentration basis

: : 10 acetic acid or sugar degradation compounds. In parti-
(1) compounds released during pretreatment, eg acetic aci ular, vanilin, a guaiacyl-containing compound, was
shown to be more inhibitory than representative syringyl-
_ _ and hydroxybenzyl-containing compounds [5].
D oy Canms O s Sy "y, Te€" Phenolic compounds in prehydrolysates prepared from
This is’Oregon State University A’griculturaI’Experiment Static’)n Technicalwoody SUb.Strate$ ha\{e been described [1’3.’22.'26]' I.n con-
Publication Number 11330 trast, relatively little is known about the lignin-derived
Received 24 April 1998; accepted 8 June 1998 compounds in prehydrolysate obtained from herbaceous
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lignocellulosics such as switchgraszaficum virgatuni..) inhibitors, along with non-inhibitory compounds, are to be
and corn stover. Switchgrass and corn stover are considerddund in an ethyl acetate extract.
to be excellent candidate feedstocks for conversion to etha- By matching mass spectra with those in the literature
nol [6,21], and thus are of particular interest. [11,14,27], 14 compounds with structures indicative of lig-

The aim of the present study was to identify and quantifynin monomers or esterified phenolics were tentatively ident-
phenolics and lignin-derived compounds found in the pre4ified. Table 1 summarizes the identification and quantifi-
hydrolysate derived from two herbaceous feedstockgation of the chromatogram peaks from the three feed
(switchgrass and corn stover) and one woody feedstocktocks. The concentrations of the identified lignin-derived
(poplar). These feedstocks were chosen based on thetomponents total 247, 141 and 112 mg lfor poplar,
potential for use in biomass-to-ethanol processes angwitchgrass and corn stover prehydrolysates, respectively.
because the relative fermentability of their prehydrolysate§his is also the order of decreasing microbial inhibition,
has been established [8]. The results provide analyticahs measured by ethanol yield, productivity, and cell mass
information that should be useful in determining the chemi-increase inPichia fermentations, as shown in Table 2. In
cal basis for differences in rates and extents of prehydrolysaddition, this is also the order of decreasing Klason lignin
ate fermentations as well as for designing detoxificationcontent for the feedstocks [7]. Similarly, the Klason lignin
processes [15]. content of native woody feedstocks was found to be nega-

tively associated with ethanol yields usiSgccharomyces
) in simultaneous saccharification and fermentation experi-

Materials and methods ments [24]. The acetate concentrations averaged 1.3, 2.0
Sample preparation and 2.9 g * for corn stover, switchgrass and poplar prehy-

Milled and dried feedstocks (poplar, corn stover anddrolysates, respectively. Furfural and hydroxymethylfurfu-

switchgrass) were treated in a (L6stainless steel Parr rall'cogcent{latcijonls were less than 0.01° for all neu-
reactor at 10% solids (18Q, 1% (w/w) H,SO,, 1 min) as  ralized prehydrolysates.

described [7]. The resulting material was filtered through__ 1he most striking difference in both the type and amount
VWR 413 grade paper, and neutralized to pH 6.0 withOf aromatic compounds was found among the syringyl

Ca(OH), as described [8]. The pretreatment conditionsCOMPOUNds. In popular prehydrolysate, the concentration
were chosen to optimize the yield of xylose in the liquid ©f Syringyl-containing compounds was approximately four-
prehydrolysate. One milliliter of 0.13lg* o-vanillin fold higher than in switchgrass or corn stover prehydrplys—
(Sigma, St Louis, MO, USA) internal standard solution was@{€S- The guaiacyl compounds were more evenly distributed
added to 10 ml of prehydrolysate. Ten milliliters of ethyl @mong the three prehydrolysates, with corn stover having

acetate were added and mixed by inversion. After SepalI_he lowest concentration of identified guaiacyl derivatives,
ation of the two phases, the upper layer was transferred t%nd SW|tqhng\ss the highest. Although other:lvxaolrk indicates
a test tube and dried under,Mt 40C for 15 min. The Hat guaiacyl-containing monomers are highly toxic to
residue was redissolved in 0.5 ml of ethyl acetate and tran%.'cﬁ'a [i]' the c?]ncentratm'ns #Sed 'Q tdhatl study were far g
ferred to a vial to which was added 50 pyridine and  Mgher than anything seen in the prehydrolysates examine

300l of bis(trimethylsilyltrifluoroacetamide (BSTFA) Nere. The work currently described was conducted on
from Sigma. The mixture was allowed to react at roomnatlve, unextracted biomass, so it is difficult to determine

temperature overnight. whether differences in the ratios of the three main phenyl
derivatives are due to differences in the core lignin struc-

tures of the three feedstocks, or if they represent differences

GC-MS in more-easily solubilized non-core lignin materials.

Gas chromatography/mass spectrometry was performed on The concentrations of syringealdehyde (S-CHO, Table 1)

a 10-m SE-54 capillary column using a Finnigan GC/MS. 4 yanjliin (G-CHO, Table 1) in the poplar prehydrolysate
Mass spectra were obtained at 70 eV. For quantification of .o gjmjjar tE) those ’reported)by Bucﬁe?tal [g] fo)r/ birc¥1
ten_tatw_ely |den§|f_|ed phenolic compounds, a 1:1 response, o prehydrolysate prepared by steam treatment and
ratio with o-vanillin was assumed. extracted with dimethylchloride without neutralization,
although the concentrations of 1-guaiacyl acetol (G-CH
CO-CH,OH, Table 1) and 1-syringyl acetol (S-GI€O-
CH,OH, Table 1) in poplar prehydrolysate were found to be
Partial total ion count (TIC) chromatograms obtained from20-30 fold higher. In comparison to red oak prehydrolysate
TMS-derivatised ethyl acetate extracts from corn stoverpretreated under similar conditions [22], poplar prehy-
switchgrass and poplar prehydrolysates are shown idrolysate contained 5-fold less vanillin and 10-fold less syr-
Figure 1. In all cases, chromatograms reflect neutralizeihgealdehyde, although the extraction and preparation regi-
prehydrolysates, ie suitable for fermentation. This approacimens were different.

was taken to facilitate comparison of the GC-MS data with  Compounds which were unique to specific prehydrolys-
fermentation results. Ethyl acetate was used for extractioates included vanillyl propanol (G-GHCH,-CH,OH,
because it has been shown to remove phenolic compound&ble 1) in switchgrass, syringyl methyl ketone (S-CO-
such as parahydroxybenzoic acid and vanillin from aspel€Hs, Table 1) in corn stover and para-hydroxybenzoic acid
prehydrolysates. Ethyl acetate was also shown to redudgi-COOH, Table 1) in poplar. Para-hydroxybenzoic acid is
inhibition of microbial growth and fermentation of prehy- a major component in poplar-derived hydrolysates [1,2].
drolysates [26]. Thus it can be expected that microbial In previous work [8] it was shown that prehydrolysates

Results/discussion
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Figure1 TIC chromatograms obtained from TMS-derivatized ethyl

acetate extracts of switchgrass (a),

corn stover (b)and poplar

(c) prehydrolysates. Tentative identifications based on mass spectra are
given below. See Table 1 for explanation of H, G, and S.
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POP 5

POP 6

POP 7

POP 8
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POP 11
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Tentative identification

ortho-vanillin (internal standard)
SCHO

H—COOH
arabinose
arabinofuranose

S-CHO

arabinose
arabinose
levo-glucosan

xylose
arabinose

xylopyranose
xylose

6-CH—CO
S—CO—CH;

xylose aromatic moieties
6-C=C—COH
G—CH,—CH,—CH,0OH
-6CO—CHOH—CH; (ketonic)
S CHOH—CO—CH;,
H-C=CH—COOH
-6CH,—CO—CH,OH (ketonic)
-SCO—CO—CH,
-SCH,—CO—CH,0OH (ketonic)
-6CH,—CO—CH,OH (transenolic)
-SCH,—CO—CH,0OH (transenolic)

from herbaceous feedstocks were more easily fermentablgtes derived from herbaceous feedstocks (switchgrass and
than those from woody feedstocks, and that the discrepsorn stover) contain much less phenolic monomers than
ancies could be only partially attributed to acetate concenpoplar-derived prehydrolysate. When considered alongside
tration differences. It is demonstrated here that prehydrolysthe lower acetate concentrations of the herbaceous prehy-
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Table 1 Lignin-derived compounds tentatively identified in dilute-acid prehydrolysates prepared from poplar, switchgrass and corn stover 367
Phenolic moietie Ro Chromatogram peak labels Poplar Switchgrass Corn stover

(mgL™) (mgL™) (mgL™)

H —COOH POP3 11.1 (0.8) nc® nd
H —C=CH—COOH SG14,CS13 nd 7.7 (0.2) 10.9 (0.2)
S —CHO CS4, POP4 29.3 (2.0) nd 10.0 (0.3)
S —CHOH—CO—CH, SG13, POP11 35.3 (2.2) 9.1 (0.3) 10.0 (0.6)
S —CH,—CO—CH,OH SG17,19; CS15,17; POP14, 16 74.4 (4.0) 26.3 (1.5) 17.2 (0.8)
S —CO—CH, Cs8 nd nd 5.2 (0.1)
S —CO—CO—CH, SG16, CS14, POP13 17.0 (0.8) 2.6 (0.1) 9.5 (0.3)
G —CO—CHOH—CH; SG12, CS11, POP10 1.0 (0.1) 2.0 (0.1) nd
G —CHO CS2, SG2, POP2 15.1 (0.4) 16.5 (0.6) 19.6 (0.2)
G —CH,—CO SG9, POP7 4.4 (0.4) 1.5 (0.1) nd
G —CH,—CH,—CH,0OH SG11 nd 18.4 (0.8) nd
G —C=CH—COH CS10, POP9 8.5 (0.5) trace 4.0 (0.6)
G —CH,—CO—CH,OH SG15, 18; CS13, 16; POP12, 15 51.2 (2.5) 56.7 (3.0) 26.0 (1.1)
Total 247.3 140.8 112.4

a/alues in parentheses are standard errors of the means.
bnd = not detected.

c

Ro Moietie R; R, R3
Hydroxyphenyl (H) H OH H
Guaiacyl (G) OCH3 OH H
RS R, Syringyl (5) OCH; | OH | OCH;
R2

Table 2 Inhibitor concentrations and fermentation results obtained from poplar, switchgrass and corn stover predydrolysates

Prehydrolysate  p-Hydroxy-phenyl Guaiacyl Syringyl Acetadte  Ethanol yield Ethanol Final dry cell

source monomers monomers monomers ®L (g ethanol g productivity mass$ (relative to
(mg L™ (mg L™ (mg L) sugar?) (g ethanol * h'?) control)

Poplar 111 80.2 156.0 2.9 0.34 0.25 -15%

Switchgrass 7.7 95.1 38.0 2.0 0.38 0.54 +5%

Corn stover 10.9 49.6 51.9 1.3 0.41 0.79 +7%

aCalculated from Reference [8].

drolysates, the evidence presented here provides a good Delgenes J, R Moletta and J Navarro. 1988. Acid hydrolysis of wheat
rationale for the lower toxicity of herbaceous prehydrolys- straw and process considerations for ethanol fermentatioRitlyia

. . stipitis Y7124. Process Biochem Int 12: 132-135.
ates. Whether this trend can be generahzed to other feedS Delgenes JP, R Moletta and JM Navarro. 1996. Effects of lignocel-

stocks can only be determined by direct comparison. These |ulosic degradation products on ethanol fermentations of glucose and
data provide a basis for comparison in assessing the feasi- xylose bySaccharomyces cerevisiggymomonas mobilj$ichia stip-

6 Downing M, S McLaughlin and MJ Walsh. 1995. In: Second Biomass
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